| 主題 | 时间 | 主席 | Speech Theme | 直播二维码 | |--|-------------------------|-------------------------|--|-------| | A1.1/1.2:
Material & Equipment | 2020/7/2
13:00-17:00 | 何金良 | Progress in gas-solid interface
charging phenomenon in
HVDC gas-insulated
transmission line | | | A1.1/1.2:
Material & Equipment | 2020/7/2
13:00-17:00 | 李琦 | Self-healing of Electrical Damage in Polymer Dielectrics for Power Transmission Cables | | | B1.1/1.2:
Control and
Protection | 2020/7/2
13:00-17:00 | 袁志昌 | Uninterrupted Power Hub - a
campact solution for
integration of AC distribution
stations through DC links | | | B1.1/1.2:
Control and Protection | 2020/7/2
13:00-17:00 | 温伟杰 | Development of DC circuit
breaker for Medium voltage
Direct current system | | | D1.1/1.2:
New Technology | 2020/7/2
13:00-17:00 | 屈鲁 | Development and application of three-port DC circuit breaker | | | D1.1/1.2:
New Technology | 2020/7/2
13:00-17:00 | 陈赦 | Capacitive Sensor for power Cable Insulation Detection: from electrical capacitance measurement to tomography | | | G1.1/G1.2
Renewable Energy
Integration | 2020/7/2
13:00-17:00 | 许国 | Full Load Range ZVS for Dual
Active Bridge Converter
ultilizing Magnitizing
Inductance | | | G1.1/G1.2
Renewable Energy
Integration | 2020/7/2
13:00-17:00 | 李海波 | Optimal Planning Method of
Power Flow Router | | | A2.1/2.2:
Material & Equipment | 2020/7/3
8:40-12:30 | 胡军 | Novel current sensors based
on giant magnetoresistive
(GMR) effect for application in
AC and DC power grids | | | A2.1/2.2:
Material & Equipment | 2020/7/3
8:40-12:30 | 张波 | Measurement of space potential distribution around overhead HVDC transmission line | | | C2.1/2.2:
AC Trans & Dis
System | 2020/7/3
8:40-12:30 | 庄池杰 | Electric Field Induced Second
Harmonic Generation based
Non-Intrusive Electric Field
Measurement | | | C2.1/2.2:
AC Trans & Dis
System | 2020/7/3
8:40-12:30 | 唐波 | Interference from UHVDC
Power Line on Geomagnetic
Observation and Its Correction | | | E2.1/:2.2
HVDC Trans System | 2020/7/3
8:40-12:30 | 宋强 | Low-Capacitance Compact
Modular Multilevel Converters | | | E2.1/:2.2
HVDC Trans System | 2020/7/3
8:40-12:30 | 许建中 | High-speed Electromagnetic
Transient (EMT) Equivalent
Modelling of Power Electronic
Transformers | | | H:Circuit Breaker/I:
DC Transformer | 2020/7/3
8:40-12:30 | 扩益 吴 | The current commutation technology based on enhanced arc voltage and its application in MVDC interruption | | | H:Circuit Breaker/I:
DC Transformer | 2020/7/3
8:40-12:30 | 赵彪 | DC solid state transformer for MVDC power distribution | | | A2.3/2.4:
Material & Equipment | 2020/7/3
13:30-17:30 | 李传扬 | Novel HVDC spacer by adaptively controlling surface charges | | | A2.3/2.4:
Material & Equipment | 2020/7/3
13:30-17:30 | 杨霄 | Promising Ceramic Materials for Electrical Insulation | | | C2.3/2.4:
AC Trans & Dis
System | 2020/7/3
13:30-17:30 | 郑跃胜 | None | | | C2.3/2.4:
AC Trans & Dis
System | 2020/7/3
13:30-17:30 | 杨庆 | Transient Overvoltage in-situ
Measuring and Monitoring
Technology: Method and
Application | 音級為 | | E2.3/ F:
HVDC Trans &
Converter | 2020/7/3
13:30-17:30 | 刘崇茹 | Energy-balance-based Fault
Ride-through Strategy of
MMC-HVDC System Under
Asymmetric Grid Conditions | | | E2.3/ F:
HVDC Trans &
Converter | 2020/7/3
13:30-17:30 | 张放 | Parameter Identification for
Subsynchronous Oscillations
Caused by Wind Generation
with PMU Data | | | J:MV&LV Power
System/K:
Power Electronic
Device | 2020/7/3
13:30-17:30 | 余占清 | Key technology of Multi-
terminal MVDC Grid | | | J:MV&LV Power
System/K:
Power Electronic
Device | 2020/7/3
13:30-17:30 | Tadokoro Yuuichi
陈政宇 | Toshiba High Power Device & Application in HVDC Power electronic devices | |